3.126 \(\int \frac{c+d x+e x^2}{a+b x^4} \, dx\)

Optimal. Leaf size=277 \[ -\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}-\frac{\left (\sqrt{a} e+\sqrt{b} c\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{a} e+\sqrt{b} c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}+\frac{d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}} \]

[Out]

(d*ArcTan[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b]) - ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x
)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2
*Sqrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(
4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/
(4*Sqrt[2]*a^(3/4)*b^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.196624, antiderivative size = 277, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.45, Rules used = {1876, 275, 205, 1168, 1162, 617, 204, 1165, 628} \[ -\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}-\frac{\left (\sqrt{a} e+\sqrt{b} c\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{a} e+\sqrt{b} c\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}+\frac{d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x + e*x^2)/(a + b*x^4),x]

[Out]

(d*ArcTan[(Sqrt[b]*x^2)/Sqrt[a]])/(2*Sqrt[a]*Sqrt[b]) - ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x
)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c + Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)])/(2
*Sqrt[2]*a^(3/4)*b^(3/4)) - ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/(
4*Sqrt[2]*a^(3/4)*b^(3/4)) + ((Sqrt[b]*c - Sqrt[a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2])/
(4*Sqrt[2]*a^(3/4)*b^(3/4))

Rule 1876

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(x^ii*(Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2)))/(a + b*x^n), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{c+d x+e x^2}{a+b x^4} \, dx &=\int \left (\frac{d x}{a+b x^4}+\frac{c+e x^2}{a+b x^4}\right ) \, dx\\ &=d \int \frac{x}{a+b x^4} \, dx+\int \frac{c+e x^2}{a+b x^4} \, dx\\ &=\frac{1}{2} d \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,x^2\right )+\frac{\left (\frac{\sqrt{b} c}{\sqrt{a}}-e\right ) \int \frac{\sqrt{a} \sqrt{b}-b x^2}{a+b x^4} \, dx}{2 b}+\frac{\left (\frac{\sqrt{b} c}{\sqrt{a}}+e\right ) \int \frac{\sqrt{a} \sqrt{b}+b x^2}{a+b x^4} \, dx}{2 b}\\ &=\frac{d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}}+\frac{\left (\frac{\sqrt{b} c}{\sqrt{a}}+e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}+\frac{\left (\frac{\sqrt{b} c}{\sqrt{a}}+e\right ) \int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx}{4 b}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt{2} a^{3/4} b^{3/4}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx}{4 \sqrt{2} a^{3/4} b^{3/4}}\\ &=\frac{d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c+\sqrt{a} e\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}-\frac{\left (\sqrt{b} c+\sqrt{a} e\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}\\ &=\frac{d \tan ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a}}\right )}{2 \sqrt{a} \sqrt{b}}-\frac{\left (\sqrt{b} c+\sqrt{a} e\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c+\sqrt{a} e\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} b^{3/4}}-\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}+\frac{\left (\sqrt{b} c-\sqrt{a} e\right ) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{b} x^2\right )}{4 \sqrt{2} a^{3/4} b^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.100156, size = 229, normalized size = 0.83 \[ \frac{-2 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}\right ) \left (2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt{2} \sqrt{a} e+\sqrt{2} \sqrt{b} c\right )+2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{a}}+1\right ) \left (-2 \sqrt [4]{a} \sqrt [4]{b} d+\sqrt{2} \sqrt{a} e+\sqrt{2} \sqrt{b} c\right )-\sqrt{2} \left (\sqrt{b} c-\sqrt{a} e\right ) \left (\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )-\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} x+\sqrt{a}+\sqrt{b} x^2\right )\right )}{8 a^{3/4} b^{3/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x + e*x^2)/(a + b*x^4),x]

[Out]

(-2*(Sqrt[2]*Sqrt[b]*c + 2*a^(1/4)*b^(1/4)*d + Sqrt[2]*Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*b^(1/4)*x)/a^(1/4)] + 2*
(Sqrt[2]*Sqrt[b]*c - 2*a^(1/4)*b^(1/4)*d + Sqrt[2]*Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*b^(1/4)*x)/a^(1/4)] - Sqrt[2
]*(Sqrt[b]*c - Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*x + Sqrt[b]*x^2] - Log[Sqrt[a] + Sqrt[2]*a^(1
/4)*b^(1/4)*x + Sqrt[b]*x^2]))/(8*a^(3/4)*b^(3/4))

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 280, normalized size = 1. \begin{align*}{\frac{c\sqrt{2}}{8\,a}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{c\sqrt{2}}{4\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }+{\frac{c\sqrt{2}}{4\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }+{\frac{d}{2}\arctan \left ({x}^{2}\sqrt{{\frac{b}{a}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{e\sqrt{2}}{8\,b}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{b}}}x\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{e\sqrt{2}}{4\,b}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+{\frac{e\sqrt{2}}{4\,b}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d*x+c)/(b*x^4+a),x)

[Out]

1/8*c*(1/b*a)^(1/4)/a*2^(1/2)*ln((x^2+(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2))/(x^2-(1/b*a)^(1/4)*x*2^(1/2)+(1/b
*a)^(1/2)))+1/4*c*(1/b*a)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x+1)+1/4*c*(1/b*a)^(1/4)/a*2^(1/2)*arct
an(2^(1/2)/(1/b*a)^(1/4)*x-1)+1/2*d/(a*b)^(1/2)*arctan(x^2*(b/a)^(1/2))+1/8*e/b/(1/b*a)^(1/4)*2^(1/2)*ln((x^2-
(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2))/(x^2+(1/b*a)^(1/4)*x*2^(1/2)+(1/b*a)^(1/2)))+1/4*e/b/(1/b*a)^(1/4)*2^(1
/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x+1)+1/4*e/b/(1/b*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/b*a)^(1/4)*x-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [A]  time = 5.46942, size = 466, normalized size = 1.68 \begin{align*} \operatorname{RootSum}{\left (256 t^{4} a^{3} b^{3} + t^{2} \left (64 a^{2} b^{2} c e + 32 a^{2} b^{2} d^{2}\right ) + t \left (16 a^{2} b d e^{2} - 16 a b^{2} c^{2} d\right ) + a^{2} e^{4} + 2 a b c^{2} e^{2} - 4 a b c d^{2} e + a b d^{4} + b^{2} c^{4}, \left ( t \mapsto t \log{\left (x + \frac{64 t^{3} a^{4} b^{2} e^{3} - 64 t^{3} a^{3} b^{3} c^{2} e + 128 t^{3} a^{3} b^{3} c d^{2} + 48 t^{2} a^{3} b^{2} c d e^{2} - 32 t^{2} a^{3} b^{2} d^{3} e + 16 t^{2} a^{2} b^{3} c^{3} d + 12 t a^{3} b c e^{4} + 12 t a^{3} b d^{2} e^{3} - 16 t a^{2} b^{2} c^{3} e^{2} + 36 t a^{2} b^{2} c^{2} d^{2} e + 8 t a^{2} b^{2} c d^{4} + 4 t a b^{3} c^{5} + 3 a^{3} d e^{5} + 5 a^{2} b c d^{3} e^{2} - 2 a^{2} b d^{5} e + 5 a b^{2} c^{4} d e - 5 a b^{2} c^{3} d^{3}}{a^{3} e^{6} - a^{2} b c^{2} e^{4} + 8 a^{2} b c d^{2} e^{3} - 4 a^{2} b d^{4} e^{2} - a b^{2} c^{4} e^{2} + 8 a b^{2} c^{3} d^{2} e - 4 a b^{2} c^{2} d^{4} + b^{3} c^{6}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d*x+c)/(b*x**4+a),x)

[Out]

RootSum(256*_t**4*a**3*b**3 + _t**2*(64*a**2*b**2*c*e + 32*a**2*b**2*d**2) + _t*(16*a**2*b*d*e**2 - 16*a*b**2*
c**2*d) + a**2*e**4 + 2*a*b*c**2*e**2 - 4*a*b*c*d**2*e + a*b*d**4 + b**2*c**4, Lambda(_t, _t*log(x + (64*_t**3
*a**4*b**2*e**3 - 64*_t**3*a**3*b**3*c**2*e + 128*_t**3*a**3*b**3*c*d**2 + 48*_t**2*a**3*b**2*c*d*e**2 - 32*_t
**2*a**3*b**2*d**3*e + 16*_t**2*a**2*b**3*c**3*d + 12*_t*a**3*b*c*e**4 + 12*_t*a**3*b*d**2*e**3 - 16*_t*a**2*b
**2*c**3*e**2 + 36*_t*a**2*b**2*c**2*d**2*e + 8*_t*a**2*b**2*c*d**4 + 4*_t*a*b**3*c**5 + 3*a**3*d*e**5 + 5*a**
2*b*c*d**3*e**2 - 2*a**2*b*d**5*e + 5*a*b**2*c**4*d*e - 5*a*b**2*c**3*d**3)/(a**3*e**6 - a**2*b*c**2*e**4 + 8*
a**2*b*c*d**2*e**3 - 4*a**2*b*d**4*e**2 - a*b**2*c**4*e**2 + 8*a*b**2*c**3*d**2*e - 4*a*b**2*c**2*d**4 + b**3*
c**6))))

________________________________________________________________________________________

Giac [A]  time = 1.08677, size = 371, normalized size = 1.34 \begin{align*} -\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{a b} b^{2} d - \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{3}} - \frac{\sqrt{2}{\left (\sqrt{2} \sqrt{a b} b^{2} d - \left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{4 \, a b^{3}} + \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{8 \, a b^{3}} - \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} b^{2} c - \left (a b^{3}\right )^{\frac{3}{4}} e\right )} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{b}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{b}}\right )}{8 \, a b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d*x+c)/(b*x^4+a),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^3)^(1/4)*b^2*c - (a*b^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(
2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) - 1/4*sqrt(2)*(sqrt(2)*sqrt(a*b)*b^2*d - (a*b^3)^(1/4)*b^2*c - (a*b^3)^(3
/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/b)^(1/4))/(a/b)^(1/4))/(a*b^3) + 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c
- (a*b^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3) - 1/8*sqrt(2)*((a*b^3)^(1/4)*b^2*c - (
a*b^3)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/b)^(1/4) + sqrt(a/b))/(a*b^3)